
Mixup Data Augmentation for Computer Vision

Siyuan Li

December, 2023

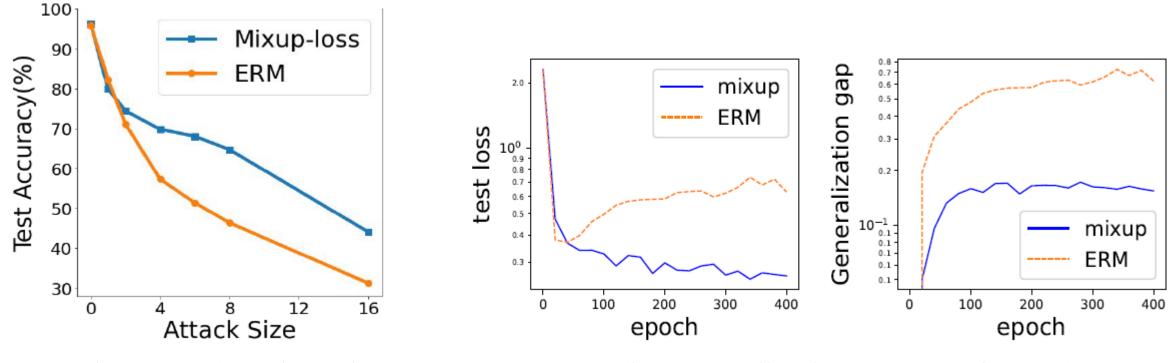
Preamble

• Learning a deep model

Preamble

• Mixup (Zhang et al. 2018) in Deep Learning

$$\tilde{S} = {\{\widetilde{x_i}, \widetilde{y_i}\}_{i=1}^n \rightarrow Classifier, }$$


where

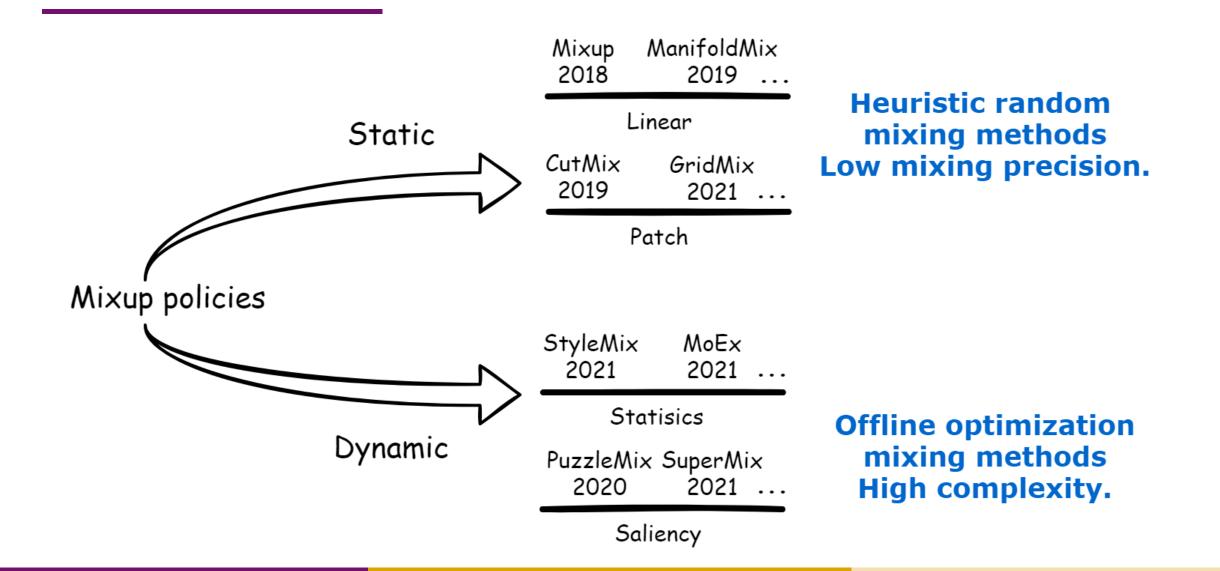
$$\widetilde{x_i} = \lambda x_i + (1 - \lambda) x_j, \widetilde{y_i} = \lambda y_i + (1 - \lambda) y_j, \lambda \sim Beta(\alpha, \beta) \in [0, 1].$$

• Mixup Improves Generalization and Robustness (Zhang et al. 2021)

(a) Robustness (Lamb et al. 2019)

(b) Generalization (Guo et al. 2019)

AutoMix: Unveiling the Power of Mixup for Stronger Classifiers

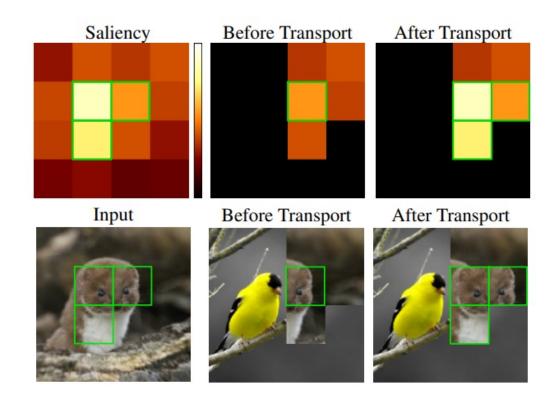

Zicheng Liu^{1,2}, Siyuan Li^{1,2}, Di Wu^{1,2}, Zihan Liu^{1,2}, Zhiyuan Chen², Lirong Wu^{1,2}, and Stan Z. Li²

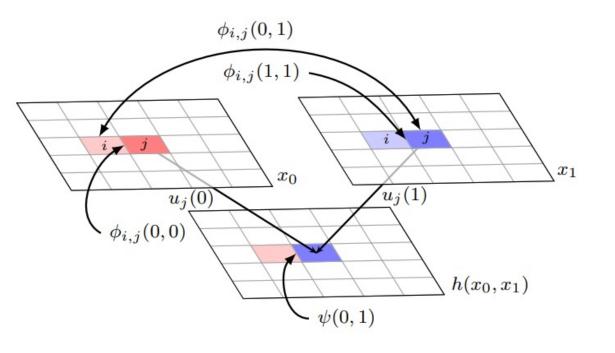
¹Zhejiang University, ²AI Lab, Westlake University,

Paper: https://arxiv.org/abs/2103.13027

Related Works

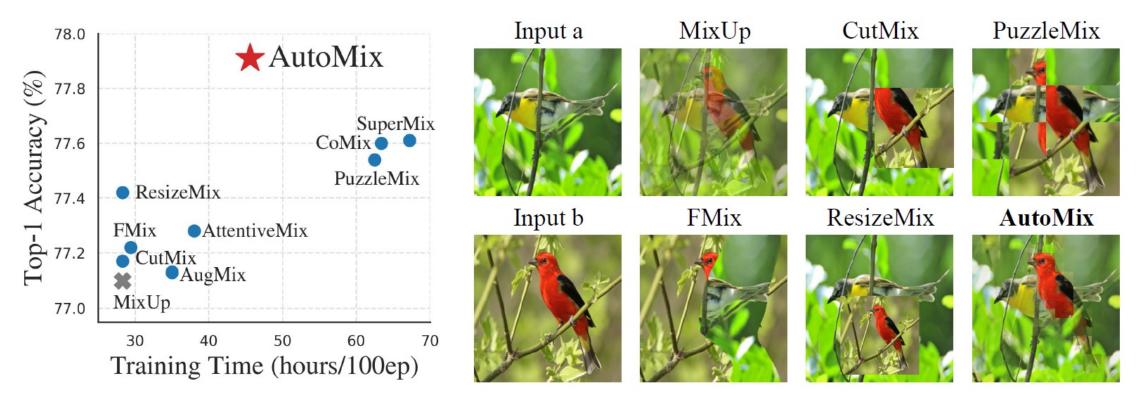
• Label Mismatch (CutMix etc.)




There is a mismatching between mixed samples and labels.

Problems

• High Complexity (PuzzleMix etc.)



AutoMix

How to balance precise mixing polices and complexity?

Solve the mixup problem in an end-to-end manner.

AutoMix: Reformulates Mixup

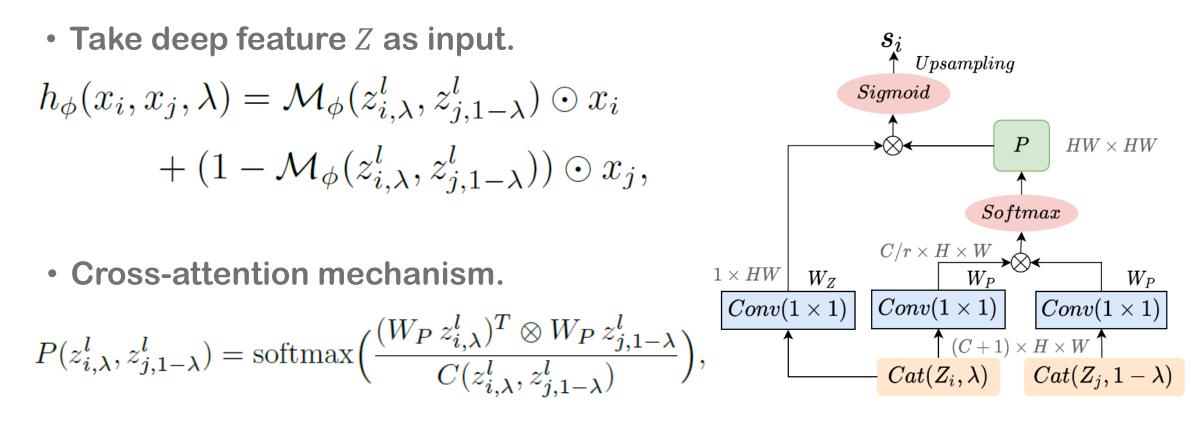
Standard cross-entropy (CE) training

$$\ell_{CE}(f_{\theta}(x), y) = -y \log f_{\theta}(x).$$

• Standard mixup CE (MCE) training

$$\ell_{MCE} = \lambda \ell_{CE}(f_{\theta}(x_{mix}), y_i) + (1 - \lambda) \ell_{CE}(f_{\theta}(x_{mix}), y_j).$$

Mixup reformulation

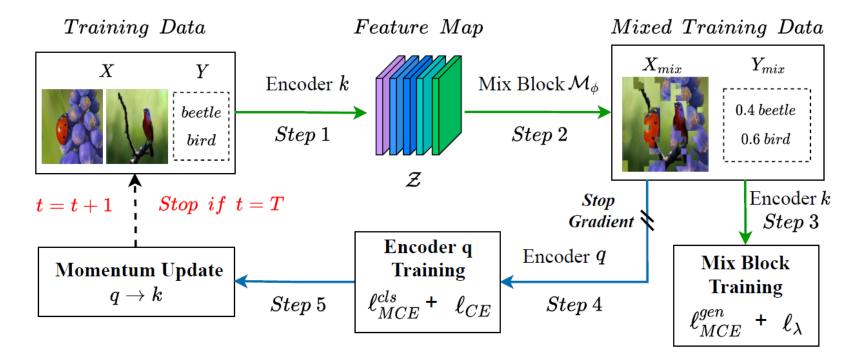

$$\min_{\theta, \phi} \ell_{MCE} \Big(f_{\theta} \big(h_{\phi}(x_i, x_j, \lambda) \big), g(y_i, y_j, \lambda) \Big).$$

Sample mixing Label mixing

Parameterize mixup function h as ϕ and optimize online with encoder f_{θ} .

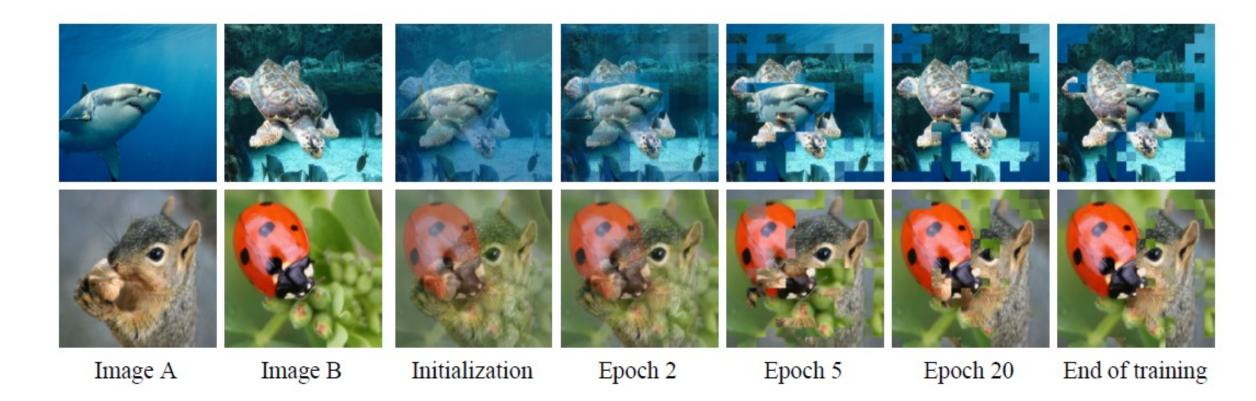
AutoMix: Mix Block

How to capture the pixel-level pair-wise relationships?



AutoMix: Momentum Pipeline

How to stabilize this bi-level optimization?



$$\ell_{\lambda} = \gamma \max\left(||\lambda - \frac{1}{HW}\sum_{h,w} s_{i,h,w}|| - \epsilon, 0\right), \quad \mathcal{L}(\theta, \phi) = \underbrace{\ell_{CE} + \ell_{MCE}^{cls}}_{classification} + \underbrace{\ell_{MCE}^{gen} + \ell_{\lambda}}_{generation}.$$

AutoMix: Momentum Pipeline

Results

Small-scale Datasets

	CIFA	R-10		CIFAR	-100	Tiny-In	nageNet
Method	R-18	RX-50	R-18	RX-50	WRN-28-8	R-18	RX-50
Vanilla	95.50	96.23	78.04	81.09	81.63	61.68	65.04
MixUp	96.62	97.30	79.12	82.10	82.82	63.86	66.36
CutMix	96.68	97.01	78.17	81.67	84.45	65.53	66.47
ManifoldMix	96.71	97.33	80.35	82.88	83.24	64.15	67.30
SaliencyMix	96.53	97.18	79.12	81.53	84.35	64.60	66.55
FMix^*	96.58	96.76	79.69	81.90	84.21	63.47	65.08
PuzzleMix	97.10	97.27	81.13	82.85	85.02	65.81	67.83
Co-Mixup	97.15	97.32	81.17	82.91	85.05	65.92	68.02
$\operatorname{ResizeMix}^*$	96.76	97.21	80.01	81.82	84.87	63.74	65.87
AutoMix	97.34	97.65	82.04	83.64	85.18	67.33	70.72
Gain	+0.19	+0.32	+0.87	+0.76	+0.13	+1.41	+2.70

• ImageNet

		PyTor	ch 100	epochs		Py	Torch 3	300 epo	chs
Methods	R-18	R-34	R-50	R-101	RX-101	R-18	R-34	R-50	R-101
Vanilla	70.04	73.85	76.83	78.18	78.71	71.83	75.29	77.35	78.91
MixUp	69.98	73.97	77.12	78.97	79.98	71.72	75.73	78.44	80.60
CutMix	68.95	73.58	77.17	78.96	80.42	71.01	75.16	78.69	80.59
ManifoldMix	69.98	73.98	77.01	79.02	79.93	71.73	75.44	78.21	80.64
SaliencyMix	69.16	73.56	77.14	79.32	80.27	70.21	75.01	78.46	80.45
FMix^*	69.96	74.08	77.19	79.09	80.06	70.30	75.12	78.51	80.20
PuzzleMix	70.12	74.26	77.54	79.43	80.53	71.64	75.84	78.86	80.67
$\operatorname{ResizeMix}^*$	69.50	73.88	77.42	79.27	80.55	71.32	75.64	78.91	80.52
AutoMix	70.50	74.52	77.91	79.87	80.89	72.05	76.10	79.25	80.98
Gain	+0.38	+0.26	+0.37	+0.44	+0.34	+0.22	+0.26	+0.34	+0.31

Fine-grained classification

	CUE	3-200	FGVC-	Aircraft	iNat	t2017	iNat	t2018	Plac	e205
Method	R-18	RX-50	R-18	RX-50	R-50	RX-101	R-50	RX-101	R-18	R-50
Vanilla	77.68	83.01	80.23	85.10	60.23	63.70	62.53	66.94	59.63	63.10
MixUp	78.39	84.58	79.52	85.18	61.22	66.27	62.69	67.56	59.33	63.01
CutMix	78.40	85.68	78.84	84.55	62.34	67.59	63.91	69.75	59.21	63.75
ManifoldMix	79.76	86.38	80.68	86.60	61.47	66.08	63.46	69.30	59.46	63.23
SaliencyMix	77.95	83.29	80.02	84.31	62.51	67.20	64.27	70.01	59.50	63.33
FMix^*	77.28	84.06	79.36	86.23	61.90	66.64	63.71	69.46	59.51	63.63
PuzzleMix	78.63	84.51	80.76	86.23	62.66	67.72	64.36	70.12	59.62	63.91
$\operatorname{ResizeMix}^*$	78.50	84.77	78.10	84.08	62.29	66.82	64.12	69.30	59.66	63.88
AutoMix	79.87	86.56	81.37	86.72	63.08	68.03	64.73	70.49	59.74	64.06
Gain	+0.11	+0.18	+0.61	+0.12	+0.42	+0.31	+0.37	+0.37	+0.08	+0.15

Calibration

Weakly supervised object localization

Backbone	Vanilla	Mixup	CutMix	FMix^*	PuzzleMix	Co-Mixup	Ours
R-18	49.91	48.62	51.85	50.30	53.95	54.13	54.46
RX-50	53.38	50.27	57.16	59.80	59.34	59.76	61.05

Robustness and transfer learning

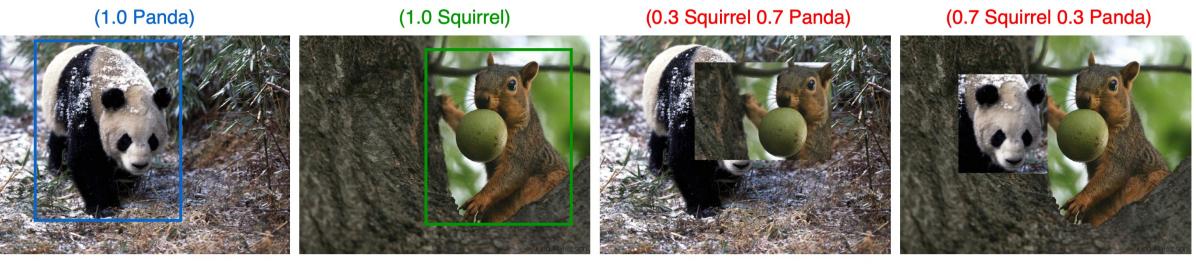
	Clean	Corruption			VOC		COCC	
	$Acc(\%)\uparrow$	$\operatorname{Acc}(\%)\uparrow$	$\operatorname{Error}(\%)\downarrow$	Methods	mAP	mAP	AP_{50}^{00}	AP_{75}^{00}
Vanilla	80.24	51.71	63.92	Vanilla	81.0	38.1	59.1	41.8
MixUp	82.44	58.10	56.60	Mixup	80.7	37.9	59.0	41.7
CutMix	81.09	49.32	76.84	CutMix	81.9	38.2	59.3	42.0
AugMix	81.18	66.54	55.59	PuzzleMix	81.9	38.3	59.3	42.1
PuzzleMix	82.76	57.82	63.71	ResizeMix	82.1	38.4	59.4	42.1
AutoMix	83.13	58.35	55.34	AutoMix	82.4	38.6	59.5	42.2
	Robu			er Lea dete				

- Ablation Study
 - Are the modules in Mix Block effective?
 - How many gains can Mix Block bring without EMA and CE?
 - Is AutoMix robust to hyperparameters?

					R-18			RX-50				
	•	nageNet		Acc(%)	Params	Time	Acc(%)	Params	Time	Im	ageNet-1	1k
module	R-18	RX-50	Mixup	63.86	11.27	20	66.36	23.38	113	MixUp		T
(random grids)	64.40	66.83	l_1	67.30	11.38	67	70.70	23.80	413	69.98	68.95	70.04
$+ cross attention + \lambda embedding$	66.87 67.15	$69.76 \\ 70.41$	l_2	67.27	11.39	41	70.43	23.86	252	-	-	70.41
$+\lambda$ embedding $+\ell_{\lambda}$	67.33	70.41 70.72	l_3	67.33	11.44	34	70.72	24.84	196	70.13 70.10	70.02 70.04	70.45 70.50
			l_4	67.32	11.64	28	70.67	27.99	174	10.10	10.04	10.00

Harnessing Hard Mixed Samples with Decoupled Regularizer

Zicheng Liu^{1,2}, Siyuan Li^{1,2}, Ge Wang^{1,2}, Chen Tan^{1,2}, Lirong Wu^{1,2}, and Stan Z. Li²


¹Zhejiang University, ²AI Lab, Westlake University,

Paper: https://arxiv.org/abs/2203.10761

Problems

• Hard Mixed Samples (CutMix etc.)

 x_a

 x_b

Hard Mixed Sample for Squirrel

Hard Mixed Sample for Panda

There is a semantic mismatching between mixed samples and labels. We hope to improve the prediction confidence in these cases.

Preliminary

Mixed Cross-Entropy Underutilizes Mixup

$$(\nabla_{z_{(a,b)}} \mathcal{L}_{MCE})^{i} = \begin{cases} -\lambda + \frac{\exp(z_{(a,b)}^{i})}{\sum_{c} \exp(z_{(a,b)}^{c})}, & i = a \\ -(1-\lambda) + \frac{\exp(z_{(a,b)}^{i})}{\sum_{c} \exp(z_{(a,b)}^{c})}, & i = b \\ \frac{\exp(z_{(a,b)}^{i})}{\sum_{c} \exp(z_{(a,b)}^{c})}, & i \neq a, b \end{cases}$$

The confidence of mixed classes is forced to be related to λ .

Could we preserve the smoothness and achieve more confidence?

Decoupled regularizer

• Softmax Degrades Confidence in Mixup (winner takes all).

$$\sigma(z_{(a,b)})^{i} = \frac{\exp(z_{(a,b)}^{i})}{\sum_{c} \exp(z_{(a,b)}^{c})}.$$

• Decoupled Softmax (remove the competitor).

$$\phi(z_{(a,b)})^{i,j} = \frac{\exp(z_{(a,b)}^i)}{\exp(z_{(a,b)}^j) + \sum_{c \neq j} \exp(z_{(a,b)}^c)}.$$

• The Mixup with Decoupled Regulerizer.

$$\mathcal{L}_{DM(CE)} = -\left(\underbrace{y_{(a,b)}^T \log(\sigma(z_{(a,b)}))}_{\mathcal{L}_{MCE}} + \eta \underbrace{y_{[a,b]}^T \log(\phi(z_{(a,b)}))y_{[a,b]}}_{\mathcal{L}_{DM}}\right)$$

Asymmetrical Strategy

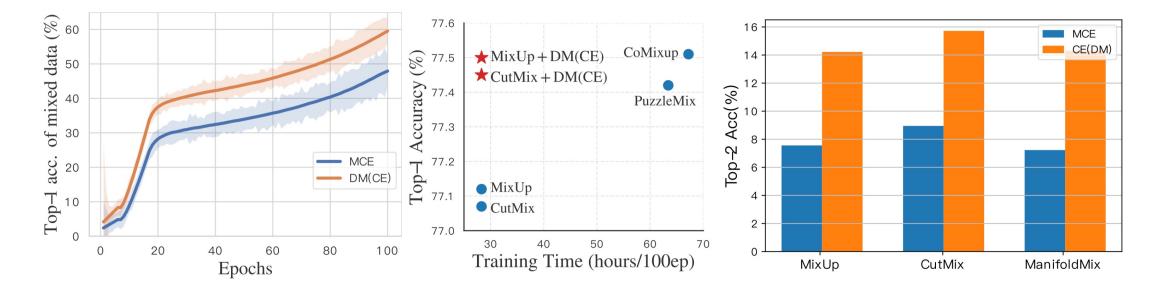
Reliable connection to augment data.

$$\hat{x}_{(a,b)} = \lambda x_a + (1-\lambda)u_b; \quad \hat{y}_{(a,b)} = \lambda y_a + (1-\lambda)v_b.$$

Notice: u_b is unlabeled data and λ is fixed less than 0.5.

• The Decoupled Mixup.

$$\hat{\mathcal{L}}_{DM} = y_a^T \log \left(\phi(z_{(a,b)}) \right) y_b,$$


Notice: we only retained the labeled part.

Fully utilize labeled data by applying our decoupled mechanism.

Practical Consequences

- Make What Should be Certain More Certain.
 - The model trained with decoupled mixup mostly doubled the top-2 mixup accuracy.
- Enhance the Training Efficiency.
 - Boosting performance without extra computation.

Supervised Learning

Datasets			CIF	AR-100			Tiny-ImageNet			
]	R-18 RX-50		WRN-28-8		R-18		RX-50		
Methods	MCE	DM(CE)	MCE	DM(CE)	MCE	DM(CE)	MCE	DM(CE)	MCE	DM(CE)
Mixup	79.12	80.44	82.10	82.96	82.82	83.51	63.86	65.07	66.36	67.70
CutMix	78.17	79.39	81.67	82.39	84.45	84.88	65.53	66.45	66.47	67.46
ManifoldMix	80.35	81.05	82.88	83.15	83.24	83.72	64.15	65.45	67.30	68.48
FMix	79.69	80.12	81.90	82.74	84.21	84.47	63.47	65.34	65.08	66.96
ResizeMix	80.01	80.26	81.82	82.96	84.87	84.72	63.74	64.33	65.87	68.56
Avg. Gain		+0.78		+0.77		+0.34		+1.18		+1.62

Benchmarking on toy datasets

	1	R-18]	R-34]	R-50
Methods	MCE	DM(CE)	MCE	DM(CE)	MCE	DM(CE)
Vanilla	70.04	-	73.85	-	76.83	-
Mixup	69.98	70.20	73.97	74.26	77.12	77.41
CutMix	68.95	69.26	73.58	73.88	77.07	77.32
ManifoldMix	69.98	70.33	73.98	74.25	77.01	77.30
FMix	69.96	70.26	74.08	74.34	77.19	77.38
ResizeMix	69.50	69.90	73.88	74.00	77.42	77.65
Avg. Gain		+0.32		+0.24		+0.25

ConvNets on ImageNet

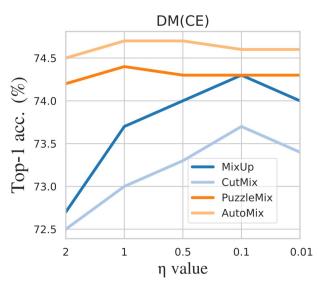
	D	eiT-S	S	win-T
Methods	MCE	DM(CE)	MCE	DM(CE)
DeiT	79.80	80.37	81.28	81.49
Mixup	79.65	80.04	80.71	80.97
CutMix	79.78	80.20	80.83	81.05
FMix	79.41	79.89	80.37	80.54
ResizeMix	79.93	80.03	80.94	81.01
Avg. Gain		+0.39		+0.19

ViTs on ImageNet

Semi-supervised Learning

		CIFA	R-10		CIFAR-100	
Methods	Losses	250	4000	400	2500	10000
Pseudo-Labeling	CE	53.51 ± 2.20	$84.92{\scriptstyle\pm0.19}$	12.55 ± 0.85	$42.26{\scriptstyle\pm0.28}$	$63.45{\scriptstyle\pm0.24}$
MixMatch	CE+Con	$86.37{\scriptstyle\pm0.59}$	$93.34{\scriptstyle\pm0.26}$	32.41 ± 0.66	$60.24{\scriptstyle\pm0.48}$	$72.22{\scriptstyle\pm0.29}$
ReMixMatch	CE+Con+Rot	93.70 ± 0.05	$95.16{\scriptstyle \pm 0.01}$	57.15 ± 1.05	$73.87{\scriptstyle\pm0.35}$	$79.08{\scriptstyle\pm0.27}$
MixMatch+DM	CE+Con+DM	89.16±0.71	$95.15{\scriptstyle\pm0.68}$	35.72 ± 0.53	62.51 ± 0.37	$74.70{\scriptstyle\pm0.28}$
UDA	CE+Con	$94.84{\scriptstyle\pm0.06}$	$95.71{\scriptstyle\pm0.07}$	53.61±1.59	$72.27{\scriptstyle\pm0.21}$	$77.51{\scriptstyle \pm 0.23}$
FixMatch	CE+Con	$95.14{\scriptstyle\pm0.05}$	$95.79{\scriptstyle\pm0.08}$	53.58 ± 0.82	$71.97{\scriptstyle\pm0.16}$	$77.80{\scriptstyle \pm 0.12}$
FlexMatch	CE+Con+CPL	95.02 ± 0.09	$95.81{\scriptstyle\pm0.01}$	60.06±1.62	$73.51{\scriptstyle\pm0.20}$	$78.10{\scriptstyle \pm 0.15}$
FixMatch+Mixup	CE+Con+MCE	$95.05{\scriptstyle\pm0.23}$	$95.83{\scriptstyle \pm 0.19}$	50.61±0.73	$72.16{\scriptstyle \pm 0.18}$	$78.75{\scriptstyle\pm0.14}$
FixMatch+DM	CE+Con+DM	95.23±0.09	$95.87{\scriptstyle\pm0.11}$	$59.75{\scriptstyle\pm0.95}$	$74.12{\scriptstyle\pm0.23}$	$79.58{\scriptstyle\pm0.17}$
Average Gain		+1.44	+0.95	+4.74	+2.30	+2.13

Ablation Study


Methods	15%	30%	50%	100%
Self-Tuning	57.82	69.12	73.59	75.08
+MCE	63.36	72.81	75.73	76.67
+MCE+AS($\lambda \ge 0.5$)	59.04	69.67	74.89	75.96
+MCE+AS($\lambda \le 0.5$)	62.97	72.46	75.40	76.34
+DM(CE)+AS($\lambda \le 0.5$)	66.17	74.25	77.68	78.52

Components are effective.

Training from scratch.

		CUB-200		F	GVC-Aircra	ıft	5	Stanford-Car	'S
Methods	15%	30%	50%	15%	30%	50%	15%	30%	50%
Fine-Tuning	$45.25{\scriptstyle\pm0.12}$	$59.68{\scriptstyle\pm0.21}$	$70.12{\scriptstyle \pm 0.29}$	$39.57{\scriptstyle\pm0.20}$	$57.46{\scriptstyle\pm0.12}$	$67.93{\scriptstyle \pm 0.28}$	$36.77{\scriptstyle\pm0.12}$	$60.63{\scriptstyle\pm0.18}$	$75.10{\scriptstyle \pm 0.21}$
+DM	50.04 ± 0.17	$61.39{\scriptstyle \pm 0.24}$	$71.87{\scriptstyle\pm0.23}$	43.15 ± 0.22	$61.02{\scriptstyle\pm0.15}$	$70.38{\scriptstyle \pm 0.18}$	$41.30{\scriptstyle \pm 0.16}$	$62.65{\scriptstyle\pm0.21}$	$77.19{\scriptstyle \pm 0.19}$
BSS						$69.19{\scriptstyle \pm 0.13}$			
Co-Tuning	52.58 ± 0.53	$66.47{\scriptstyle\pm0.17}$	$74.64{\scriptstyle\pm0.36}$	44.09 ± 0.67	$61.65{\scriptstyle\pm0.32}$	$72.73{\scriptstyle\pm0.08}$	$46.02{\scriptstyle\pm0.18}$	$69.09{\scriptstyle\pm0.10}$	$80.66{\scriptstyle \pm 0.25}$
+DM	54.96 ±0.65	$\textbf{68.25}{\scriptstyle \pm 0.21}$	75.72 ± 0.37	49.27 ±0.83	65.60 ± 0.41	74.89 ± 0.17	51.78 ±0.34	$\textbf{74.15}{\scriptstyle \pm 0.29}$	83.02 ± 0.26
Self-Tuning	64.17 ± 0.47	$75.13{\scriptstyle \pm 0.35}$	$80.22{\scriptstyle\pm0.36}$	64.11 ± 0.32	$76.03{\scriptstyle \pm 0.25}$	$81.22{\scriptstyle\pm0.29}$	$72.50{\scriptstyle \pm 0.45}$	$83.58{\scriptstyle\pm0.28}$	$88.11{\scriptstyle \pm 0.29}$
+Mixup	62.38 ± 0.32	$74.65{\scriptstyle\pm0.24}$	$81.46{\scriptstyle \pm 0.27}$	59.38 ± 0.31	$74.65{\scriptstyle \pm 0.26}$	$81.46{\scriptstyle \pm 0.27}$	70.31 ± 0.27	$83.63{\scriptstyle\pm0.23}$	$88.66{\scriptstyle\pm0.21}$
+DM	73.06±0.38	79.50 ±0.35	82.64 ± 0.24	67.57±0.27	$80.71{\pm}0.25$	84.82 ± 0.26	81.69 ±0.23	89.22 ± 0.21	91.26 ±0.19
Avg. Gain	+5.95	+2.77	+1.34	+5.65	+4.52	+2.65	+7.22	+4.22	+2.35

Fine-tuning.

DM is robust to hyper-parameters

Thank you!

lisiyuan@westlake.edu.cn