

Modern Convolutional Neural Networks

Siyuan Li

Westlake University, Zhejiang University March, 2024

Timeline of Modern CNNs

InceptionNeXt CVPR'2024 (2023)

DCN.V4 CVPR'2024

ConvNeXt CVPR'2022

RepLKNet CVPR'2022

SLaK ICLR'2023 ConvNeXt.V2 CVPR'2023

DCN.V3 CVPR'2023 UniRepLKNet CVPR'2024

Convolution Kernel Designs

Large-Kernel Conv + Gated Attentions

VAN (2022) CVMJ'2023

HorNet NeurIPS'2022 FocalNet
NeurIPS'2022

MogaNet (2022) ICLR'2024

Mamba arXiv'2023

VMamba arXiv'2024

Content

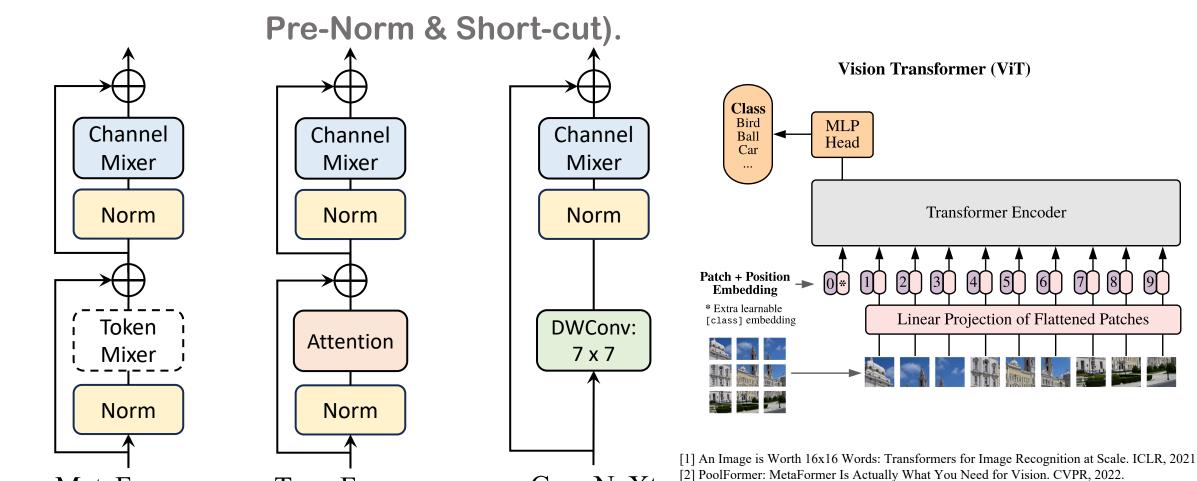
- 1. Modern CNNs: Macro Design and Pre-training MetaFormer, ConvNeXt, ConvNeXt.V2 (SparK, A2MIM)
- 2. Design of Convolution Kernels
 RepLKNet, SLaK, InceptionNext, DCN.V3/V4, UniRepLKNet
- 3. Combining Large Kernel with Gated Attention VAN, HorNet, FocalNet, MogaNet, Mamba, VMamba

Modern CNNs: Macro Design

TransFormer

MetaFormer

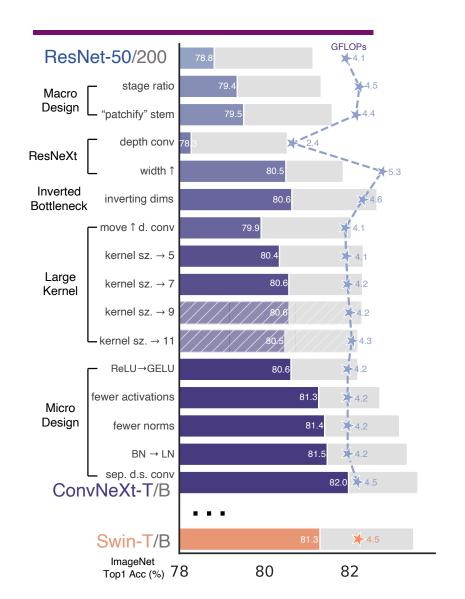
Macro Design: Patch Embedding + Token Mixer + Channel Mixer +

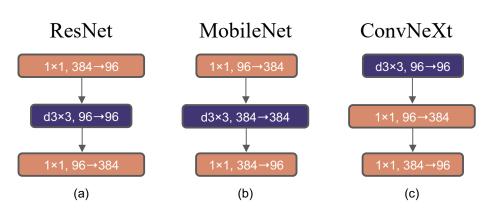


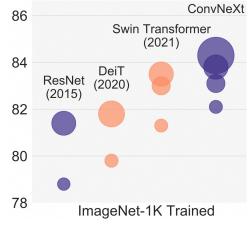
ConvNeXt

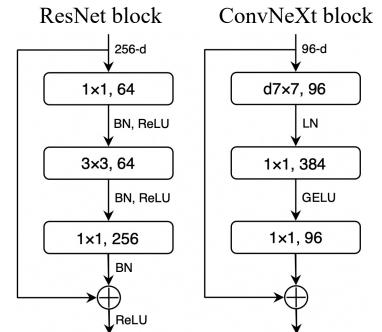
[3] A ConvNet for the 2020s. CVPR, 2022.

Modern CNNs: ConvNeXt







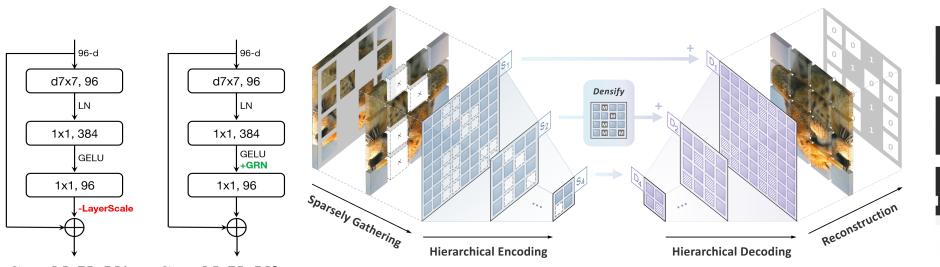


model	image	#param.	EI ODe	throughput	IN-1K					
model	size	πрагані.	TLOI S	(image / s) t	op-1 acc.					
	ImageNet-1K trained models									
• RegNetY-16G [54]	224^{2}	84M	16.0G	334.7	82.9					
• EffNet-B7 [71]	600^{2}	66M	37.0G	55.1	84.3					
• EffNetV2-L [72]	480^{2}	120M	53.0G	83.7	85.7					
o DeiT-S [73]	224^{2}	22M	4.6G	978.5	79.8					
o DeiT-B [73]	224^{2}	87M	17.6G	302.1	81.8					
o Swin-T	224^{2}	28M	4.5G	757.9	81.3					
ConvNeXt-T	224^{2}	29M	4.5G	774.7	82.1					
Swin-S	224^{2}	50M	8.7G	436.7	83.0					
ConvNeXt-S	224^{2}	50M	8.7G	447.1	83.1					
o Swin-B	224^{2}	88M	15.4G	286.6	83.5					
ConvNeXt-B	224^{2}	89M	15.4G	292.1	83.8					
o Swin-B	384^{2}	88M	47.1G	85.1	84.5					
ConvNeXt-B	384^{2}	89M	45.0G	95.7	85.1					
 ConvNeXt-L 	224^{2}	198M	34.4G	146.8	84.3					
ConvNeXt-L	384 ²	198M	101.0G	50.4	85.5					

[1] A ConvNet for the 2020s. CVPR, 2022.

Modern CNNs: ConvNeXt.V2

CNNs benefit from Masked Image Modeling (MIM) Pre-training.



ConvNeXt.V1 ConvNeXt.V2

MIM pre-training with SparK (or FCMAE in ConvNeXt.V2)

Sparse Conv for Masking

Global Response Normalization (GRN)

```
# gamma, beta: learnable affine transform parameters
# X: input of shape (N,H,W,C)
```

gx = torch.norm(X, p=2, dim=(1,2), keepdim=True) nx = gx / (gx.mean(dim=-1, keepdim=True)+1e-6)return gamma * (X * nx) + beta + X

$$\mathcal{G}(X) := X \in \mathcal{R}^{H \times W \times C} \to gx \in \mathcal{R}^{C}$$

$$\mathcal{N}(||X_{i}||) := ||X_{i}|| \in \mathcal{R} \to \frac{||X_{i}||}{\sum_{i=1,\dots,C} ||X_{j}||} \in \mathcal{R}$$

Backbone	Method	Method #param FI		Val acc.
ConvNeXt V1-B	Supervised	89M	15.4G	83.8
ConvNeXt V1-B	FCMAE	89M	15.4G	83.7
ConvNeXt V2-B	Supervised	89M	15.4G	84.3 (+0.5)
ConvNeXt V2-B	FCMAE	89M	15.4G	84.6 (+ 0.8)
ConvNeXt V1-L	Supervised	198M	34.4G	84.3
ConvNeXt V1-L	FCMAE	198M	34.4G	84.4
ConvNeXt V2-L	Supervised	198M	34.4G	84.5 (+0.2)
ConvNeXt V2-L	FCMAE	198M	34.4G	85.6 (+1.3)

Methods	#Para.	Sup.	MoCoV3 [‡]	SimMIM [‡]	SparK	A^2MIM
Target	(M)	Label	CL	RGB	RGB	RGB
ResNet-50	25.6	79.8	80.1	79.9	80.6	80.4
ResNet-101	44.5	81.3	81.6	81.3	82.2	81.9
ResNet-152	60.2	81.8	82.0	81.9	82.7	82.5
ResNet-200	64.7	82.1	82.5	82.2	83.1	83.0
ConvNeXt-T	28.6	82.1	82.3	82.1	82.7	82.5
ConvNeXt-S	50.2	83.1	83.3	83.2	84.1	83.7
ConvNeXt-B	88.6	83.5	83.7	83.6	84.8	84.1

Content

1. Modern CNNs: Macro Design and Pre-training

MetaFormer, ConvNeXt, ConvNeXt.V2 (SparK, A2MIM)

2. Design of Convolution Kernels

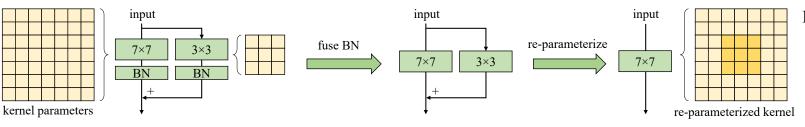
RepLKNet, SLaK, InceptionNext, DCN.V3/V4, UniRepLKNet

3. Combining Large Kernel with Gated Attention

VAN, HorNet, FocalNet, MogaNet, Mamba, VMamba

Large Kernels: RepLKNet

- Large-Kernel (LK) Convolutions are efficient and competitive as Self-attention.
- Training extremely large convolutions with Structural Re-parameterization.



Resolution R	Imml	Latency (ms) @ Kernel size									
Resolution It	Impl	3	5	7	9	13	17	21	27	29	31
$\phantom{00000000000000000000000000000000000$	Pytorch	5.6	11.0	14.4	17.6	36.0	57.2	83.4	133.5	150.7	171.4
10 × 10	Ours	5.6	6.5	6.4	6.9	7.5	8.4	8.4	8.4	8.3	8.4
32×32	Pytorch	21.9	34.1	54.8	76.1	141.2	230.5	342.3	557.8	638.6	734.8
32 × 32	Ours	21.9	28.7	34.6	40.6	52.5	64.5	73.9	87.9	92.7	96.7
64×64	Pytorch	69.6	141.2	228.6	319.8	600.0	977.7	1454.4	2371.1	2698.4	3090.4
	Ours	69.6	112.6	130.7	152.6	199.7	251.5	301.0	378.2	406.0	431.7

		ImageNet			ADE20K		
Kernel size	Architecture	Top-1	Params	FLOPs	mIoU	Params	FLOPs
7-7-7-7	ConvNeXt-Tiny	81.0	29M	4.5G	44.6	60M	939G
7-7-7-7	ConvNeXt-Small	82.1	50M	8.7G	45.9	82M	1027G
7-7-7-7	ConvNeXt-Base	82.8	89M	15.4G	47.2	122M	1170G
31-29-27-13	ConvNeXt-Tiny	81.6	32M	6.1G	46.2	64M	973G
31-29-27-13	ConvNeXt-Small	82.5	58M	11.3G	48.2	90M	1081G

Extremely large kernels benefit both classification and downstream tasks and outperforms ViTs.

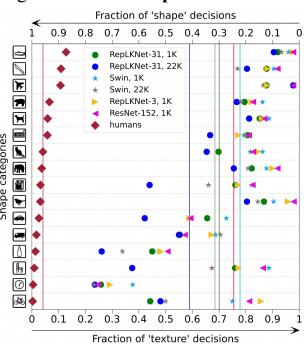
Large kernels are **memory bound** instead of compute bound.

	Swin-T	ConvNeXt-T	RepLKNet
0.0	02 04 06 08 10	02 04 06 08 10	02 04 06 08 1

Effective receptive field

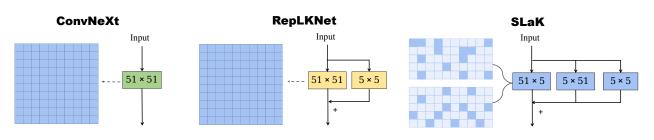
 $DW7 \times 7 = DW3 \times 3$ (BN) $+DW7 \times 7$ (BN)+Short-cut.

Large kernels are **shape biased** as ViTs.



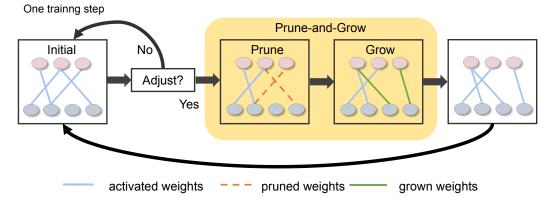
Large Kernels: SLaK

- Step 1: Decomposing a large kernel (61x61) into two rectangular, parallel kernels.
- Step 2: Using sparse groups training (speedup), expanding more width.

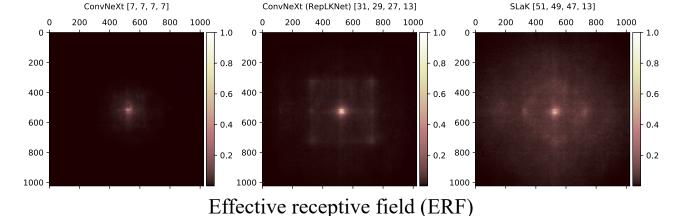


Kernel Size	Top-1 Acc	#Params	FLOPs	Top-1 Acc	#Params	FLOPs	Top-1 Acc	#Params	FLOPs
	Sp	arse groups		Sparse grou	ps, expand r	nore width			
7-7-7	81.0	29M	4.5G	80.0	17M	2.6G	81.1	29M	4.5G
31-29-37-13 51-49-47-13 61-59-57-13	81.3 81.5 81.4	30M 31M 31M	5.0G 5.4G 5.6G	80.4 80.5 80.4	18M 18M 19M	2.9G 3.1G 3.2G	81.5 81.6 81.5	30M 30M 31M	4.8G 5.0G 5.2G

Model	Kernel Size	AP ^{box}	AP_{50}^{box}	AP_{75}^{box}	AP^{mask}	AP_{50}^{mask}	AP^{mask}_{75}		
pre-trained for 120 epochs, finetuned for $1 \times (12 \text{ epochs})$									
ConvNeXt-T (Liu et al., 2022b)	7-7-7-7	47.3	65.9	51.5	41.1	63.2	44.4		
ConvNeXt-T (RepLKNET)* (Ding et al., 2022)	31-29-27-13	47.8	66.7	52.0	41.4	63.9	44.7		
SLaK-T	51-49-47-13	48.4	67.2	52.5	41.8	64.4	45.2		
pre-trained for	pre-trained for 300 epochs, finetuned for $3 \times (36 \text{ epochs})$								
ConvNeXt-T (Liu et al., 2022b)	7-7-7-7	50.4	69.1	54.8	43.7	66.5	47.3		
SLaK-T	51-49-47-13	51.3	70.0	55.7	44.3	67.2	48.1		



- (1) Initialization: Constructing Sparce Convolution based on SNIP^[2]
- (2) Dynamic sparsity: Pruning (the lowest magnitude) and growing

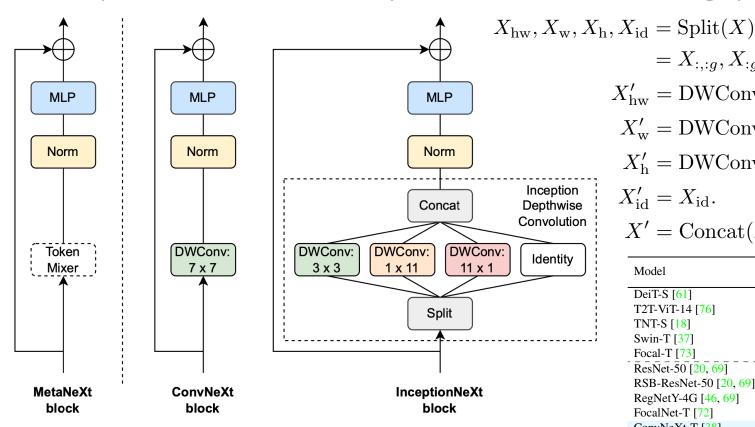


^[1] More ConvNets in the 2020s: Scaling up Kernels Beyond 51x51 using Sparsity. ICLR, 2023.

^[2] SNIP: Single-shot Network Pruning based on Connection Sensitivity. ICLR, 2019.

Large Kernels: InceptionNeXt

- MetaNeXt: Fusing Token Mixer with Channel Mixer + PreNorm + ShortCut.
- Inception Kernels: Better performance and throughputs than Depth-wise Conv 7x7.



[1] InceptionNeXt: When Inception Meets ConvNeXt. CVPR, 2024.

$X_{\mathrm{id}} = \mathrm{Split}(X)$	
$= X_{:,:g}, X_{:g:2g}, X_{:2g:3g}, X_{:3g:}$	Deptheise convolution Inception deptheise convolution (Ours)
$X'_{\text{hw}} = \text{DWConv}_{k_s \times k_s}^{g \to g} g(X_{\text{hw}}),$	₹ 300
$X'_{\mathbf{w}} = \mathrm{DWConv}_{1 \times k_b}^{g \to g} g(X_{\mathbf{w}}),$	O 200
$X'_{\rm h} = {\rm DWConv}_{k_b \times 1}^{g \to g} g(X_{\rm h}),$	100
$X'_{\rm id} = X_{\rm id}.$	
$X' = \operatorname{Concat}(X'_{\operatorname{hw}}, X'_{\operatorname{w}}, X'_{\operatorname{h}}, X'_{\operatorname{id}})$	

Model	Mixing	Image	Params	MACs	Throughput	(img/second)	Top-1
Wiodei	Type	(size)	(M)	(G)	Train	Inference	(%)
DeiT-S [61]	Attn	224^{2}	22	4.6	1227	3781	79.8
T2T-ViT-14 [76]	Attn	224^{2}	22	4.8	_	_	81.5
TNT-S [18]	Attn	224^{2}	24	5.2	_	_	81.5
Swin-T [37]	Attn	224^{2}	29	4.5	564	1768	81.3
Focal-T [73]	Attn	224^{2}	29	4.9	_	_	82.2
ResNet-50 [20, 69]	Conv	$2\bar{2}4^{2}$	26	4.1	969	3149	78.4
RSB-ResNet-50 [20, 69]	Conv	224^{2}	26	4.1	969	3149	79.8
RegNetY-4G [46, 69]	Conv	224^{2}	21	4.0	670	2694	81.3
FocalNet-T [72]	Conv	224^{2}	29	4.5	_	_	82.3
ConvNeXt-T [38]	Conv	224^{2}	29	4.5	575	2413 (1943)	82.1
InceptionNeXt-T (Ours)	Conv	224^{2}	28	4.2	901 (+57%)	2900 (+20%)	82.3 (+0.2)

g rules

 $2^{i-1}C_1$

 $L_2 = L_4$ L_3

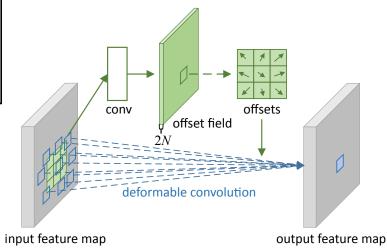
 C_i/C'

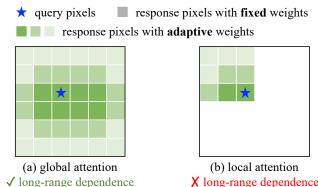
Kernel Designs: DCN.V3 (InternImage)

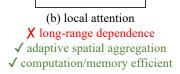
✓ adaptive spatial aggregation

X computation/memory efficient

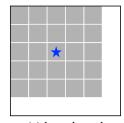
DCN.V3: Learnable offsets (V1) + Softmax-normalized modulation (V2) + Grouping.







Self-Attention vs. Conv vs. DCN

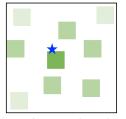


(c) large kernel

√ long-range dependence

X adaptive spatial aggregation

√ computation/memory efficient



(d) dynamic sparse kernel (ours)

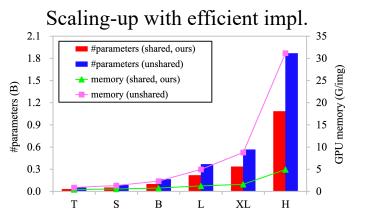
√ long-range dependence

√ adaptive spatial aggregation

√ computation/memory efficient

DCN.V1:
$$\mathbf{y}(\mathbf{p}_0) = \sum_{\mathbf{p}_n \in \mathcal{R}} \mathbf{w}(\mathbf{p}_n) \cdot \mathbf{x}(\mathbf{p}_0 + \mathbf{p}_n + \Delta \mathbf{p}_n)$$
DCN.V2: $\mathbf{y}(p_0) = \sum_{k=1}^{K} \mathbf{w}_k \mathbf{m}_k \mathbf{x}(p_0 + p_k + \Delta p_k)$
DCN.V3: $\mathbf{y}(p_0) = \sum_{k=1}^{G} \sum_{k=1}^{K} \mathbf{w}_g \mathbf{m}_{gk} \mathbf{x}_g(p_0 + p_k + \Delta p_{gk})$

Offsets Δp_n , Regular grids p_n , Modulation m_k , weights w



nethod	type	scale	#params	#FLOPs	acc (%)
SwinV2-L/24 [‡] [16]	T	$384^{\hat{2}}$	197M	115G	87.6
RepLKNet-31L‡ [22]	C	384^{2}	172M	96G	86.6
IorNet-L [‡] [43]	C	384^{2}	202M	102G	87.7
ConvNeXt-L [‡] [21]	C	384^{2}	198M	101G	87.5
ConvNeXt-XL [‡] [21]	C	384^{2}	350M	179G	87.8
nternImage-L [‡] (ours)	C	384^{2}	223M	108G	87.7
nternImage-XL [‡] (ours)	C	384^{2}	335M	163G	88.0
/iT-G/14 [#] [30]	T	518^{2}	1.84B	5160G	90.5
CoAtNet-6# [20]	T	512^{2}	1.47B	1521G	90.5
CoAtNet-7# [20]	T	512^{2}	2.44B	2586G	90.9
Florence-CoSwin-H# [59]	T	_	893M	_	90.0
SwinV2-G# [16]	T	640^{2}	3.00B	_	90.2
RepLKNet-XL [#] [22]	C	384^{2}	335M	129G	87.8
BiT-L-ResNet152x4# [67]	C	480^{2}	928M	_	87.5
nternImage-H# (ours)	C	224^{2}	1.08B	188G	88.9
nternImage-H# (ours)	C	640^{2}	1.08B	1478G	89.6

^[1] Deformable Convolutional Networks. ICCV, 2017. [2] Deformable ConvNets v2: More Deformable, Better Results. CVPR, 2018.

^[3] InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions. CVPR, 2023.

Kernel Designs: DCN.V4 (FlashInternImage) 西朔大學 MESTLAKE UNIVERSITY

★★ query pixels

DCN.V4: No Softmax normalization + Speed-up (reducing HRM as Flash-Atte



H. W

(b) DCNv4

H. W

(a) DCNv3

Model	5th EP	10th Ep	20th Ep	50th Ep	300th
ConvNeXt	29.9	53.5	66.1	74.8	8
ConvNeXt	8.5	25.3	51.1	69.1	8
+ softmax	(-21.4)	(-28.2)	(-15.0)	(-5.7)	(-2

Using Softmax in DWConv7×7 degenerating performance

Operator	Runtime (ms)							
Operator	$56 \times 56 \times 128$	$28 \times 28 \times 256$	$14 \times 14 \times 512$	$7 \times 7 \times 10$				
Attention (torch)	30.8 / 19.3	3.35 / 2.12	0.539 / 0.448	0.446 / 0.1				
FlashAttention-2	N/A / 2.46	N/A / 0.451	N/A / 0.123	N/A / 0.09				
Window Attn (7×7)	4.05 / 1.46	2.07 / 0.770	1.08 / 0.422	0.577 / 0.2				
DWConv $(7 \times 7, torch)$	2.02 / 1.98	1.03 / 1.00	0.515 / 0.523	0.269 / 0.2				
DWConv (7×7 , cuDNN)	0.981 / 0.438	0.522 / 0.267	0.287 / 0.153	0.199 / 0.1				
DCNv3	1.45 / 1.52	0.688 / 0.711	0.294 / 0.298	0.125 / 0.1				
DCNv4	0.606 / 0.404	0.303 / 0.230	0.145 / 0.123	0.0730 / 0.06				

COCO2017 Det. and Seg.

Model	Size	Scale	Acc	Throughput
Swin-T	29M	224^{2}	81.3	1989 / 3619
ConvNeXt-T	29M	224^{2}	82.1	2485 / 4305
InternImage-T	30M	224^{2}	83.5	1409 / 1746
FlashInternImage-T	30M	224^{2}	83.6	2316 / 3154 (+64%/ + 80%)
		2		
Swin-S	50M	224^{2}	83.0	1167/2000
ConvNeXt-S	50M	224^{2}	83.1	1645/2538
InternImage-S	50M	224^{2}	84.2	1044/1321
FlashInternImage-S	50M	224^{2}	84.4	1625 / 2396

ImageNet-1K Classification

				Casc	CNN		
Model	#param	param FPS		1	X	$3\times$ +MS	
				AP^{b}	AP^{m}	AP^{b}	AP^{m}
Swin-L	253M	20 /	26	51.8	44.9	53.9	46.7
ConvNeXt-L	255M	26 /	40	53.5	46.4	54.8	47.6
InternImage-L	277M	20 /	26	54.9	47.7	56.1	48.5
ConvNeXt-XL	407M	21/	32	53.6	46.5	55.2	47.7
InternImage-XL	387M	16/	23	55.3	48.1	56.2	48.8
FlashInternImage-L	277M	26 /	39	55.6	48.2	56.7	48.9

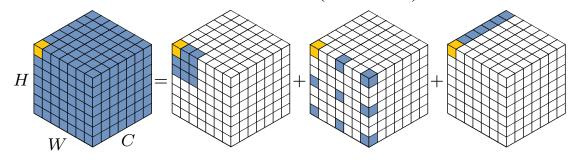
[1] DCNv4: Efficient Deformable ConvNets: Rethinking Dynamic and Sparse Operator for Vision Ap

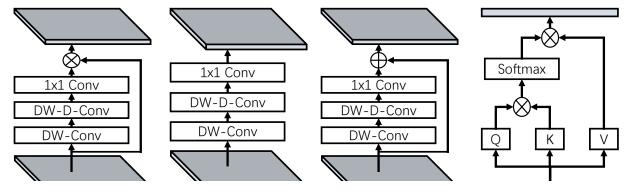
Content

- 1. Modern CNNs: Macro Design and Pre-training
 - MetaFormer, ConvNeXt, ConvNeXt.V2 (SparK, A2MIM)
- 2. Design of Convolution Kernels
 - RepLKNet, SLaK, InceptionNext, DCN.V3/V4, UniRepLKNet
- 3. Combining Large Kernel with Gated Attention

VAN, HorNet, FocalNet, MogaNet, Mamba, VMamba

Decomposed large kernel + Gating.





VAN (LKA)

Non-attention Non-attention (add)

Self-attention

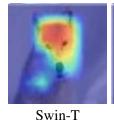
Properties	Convolution	Self-Attention	LKA
Local Receptive Field	✓	X	✓
Long-range Dependence	X	✓	/
Spatial Adaptability	X	✓	/
Channel Adaptability	×	×	✓
Computational complexity	$\mathcal{O}(n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$

Properties of DWConv vs. MHSA vs. Large-kernel Attention

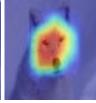
Method	K	Dilation	Params. (M)	GFLOPs	Acc(%)
VAN-B0	7	2	4.03	0.85	74.8
VAN-B0	14	33	4.07	0.87	75.3
VAN-B0	21	3	4.11	0.88	75.4
VAN-B0	28	4	4.14	0.90	75.4

Kernel size vs. Dilation vs. ImageNet Acc (%)

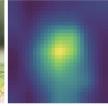
 $Conv21\times21 = DWConv5\times5 + DWConv7\times7 + PWConv1\times1$ (Dilation=3)



ConvNeXt-T



VAN-B2

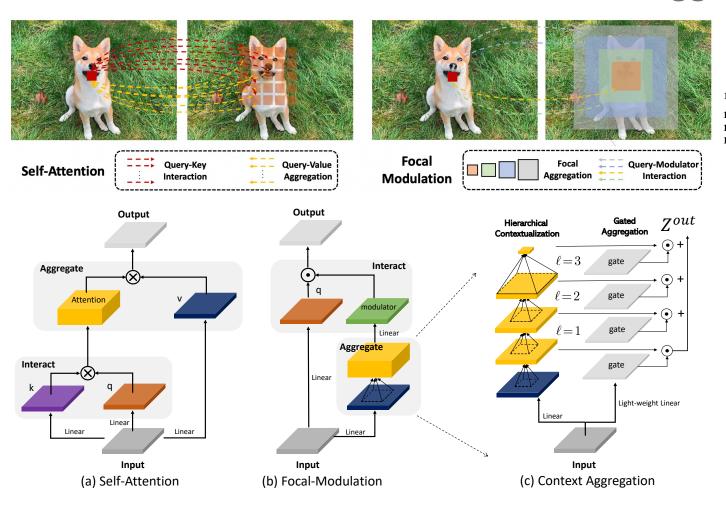


Grad-CAM visualization

Attention map visualization

Gating & Hierarchical Kernel: FocalNet

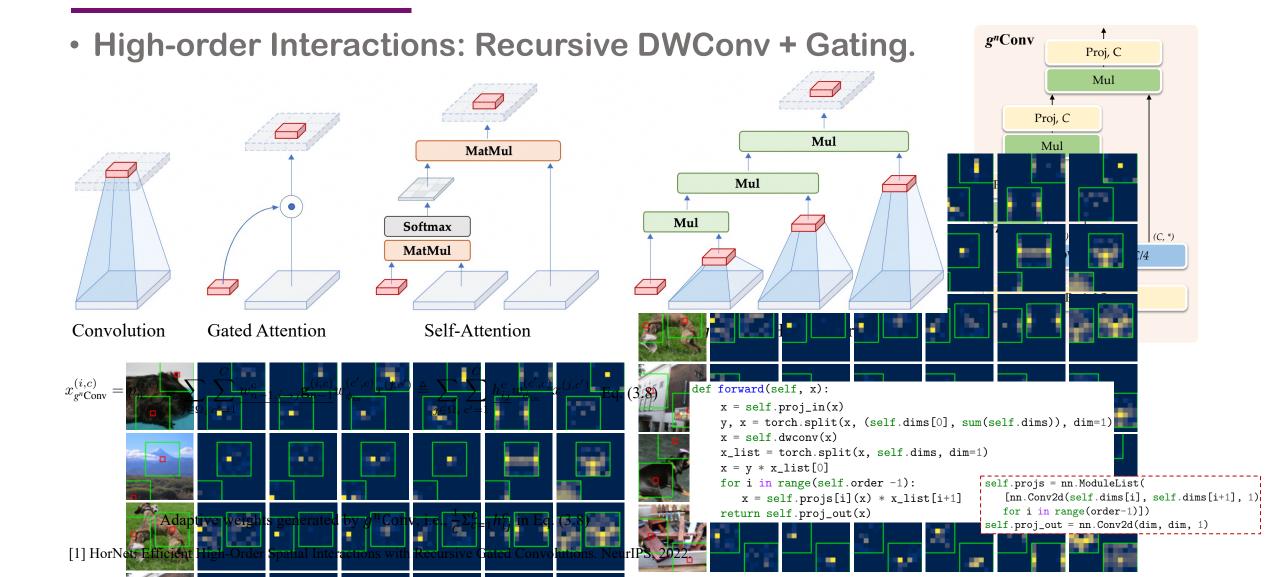
Hierarchical Contextualization + Gated Aggregation.



```
def forward(x, m=0):
      x = pj_in(x).permute(0, 3, 1, 2)
      q, z, gate = split(x, (C, C, L+1), 1)
     for \ell in range(L):
             z = hc_{layers}[\ell](z)
                                                      # Eq.(4), hierarchical contextualization
             m = m + z * gate[:, \ell:\ell+1] # Eq.(5), gated aggregation
     m = m + GeLU(z.mean(dim=(2,3))) * gate[:,L:]
                                                      # Eq.(6), Focal Modulation
     x = q * pj_cxt(m)
     return pj_out( x.permute(0, 2, 3, 1) )
                                                               L3
                                                                              Global
 \mathbf{Z}^{\ell} = f_a^{\ell}(\mathbf{Z}^{\ell-1}) \triangleq \mathsf{GeLU}(\mathsf{DWConv}(\mathbf{Z}^{\ell-1})) \in \mathbb{R}^{H \times W \times C} Eq. (4)
                \mathbf{Z}^{out} = \sum_{l=1}^{L+1} \mathbf{\bar{G}}_{l}^{\ell l} \odot \mathbf{Z}^{\ell} \in \mathbb{R}^{H \times W \times C} \quad \text{Eq. (5)}
```

[1] Focal Modulation Networks. NeurIPS, 2022.

Gating & Hierarchical Kernel: HorNet



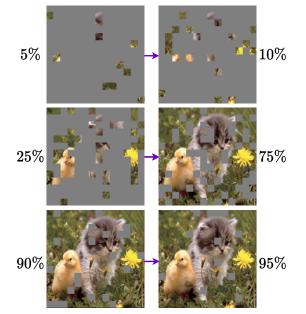
Multi-order Interaction: MogaNet

Representation Bottleneck^[1]: Loss in the middle-order interactions.

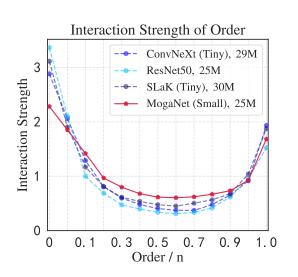
$$\begin{array}{ll} \text{Multi-order} & I^{(m)}(i,j) = \mathbb{E}_{S \subseteq N \setminus \{i,j\}, |S| = m} [\Delta f(i,j,S)] \\ \text{Interactions} & N = \{1,\dots,n\} & 0 \leq m \geq n-2 \\ & \Delta f(i,j,S) = f(S \cup \{i,j\}) - f(S \cup \{i\}) - f(S \cup \{j\}) + f(S) \end{array}$$

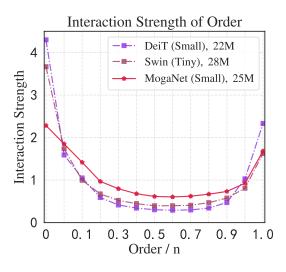
$$\begin{array}{ll} \text{Interaction} \quad J^{(m)} = \frac{\mathbb{E}_{x \in \Omega} \mathbb{E}_{i,j} |I^{(m)}(i,j|x)|}{\mathbb{E}_{m'} \mathbb{E}_{x \in \Omega} \mathbb{E}_{i,j} |I^{(m')}(i,j|x)|} \end{array}$$

- Much new information
- Little new infomation
- Little new information
 Much new infomation
- Much new information
- Little new infomation



Both ViTs and modern CNN architectures fail to explore middle-order interactions, which are informative to humans.

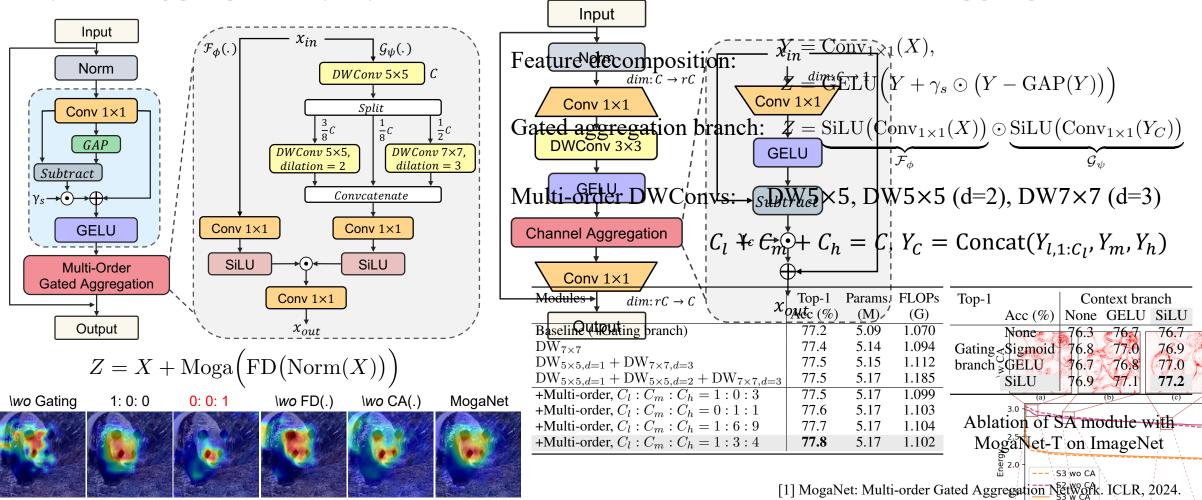




— S2 w CA

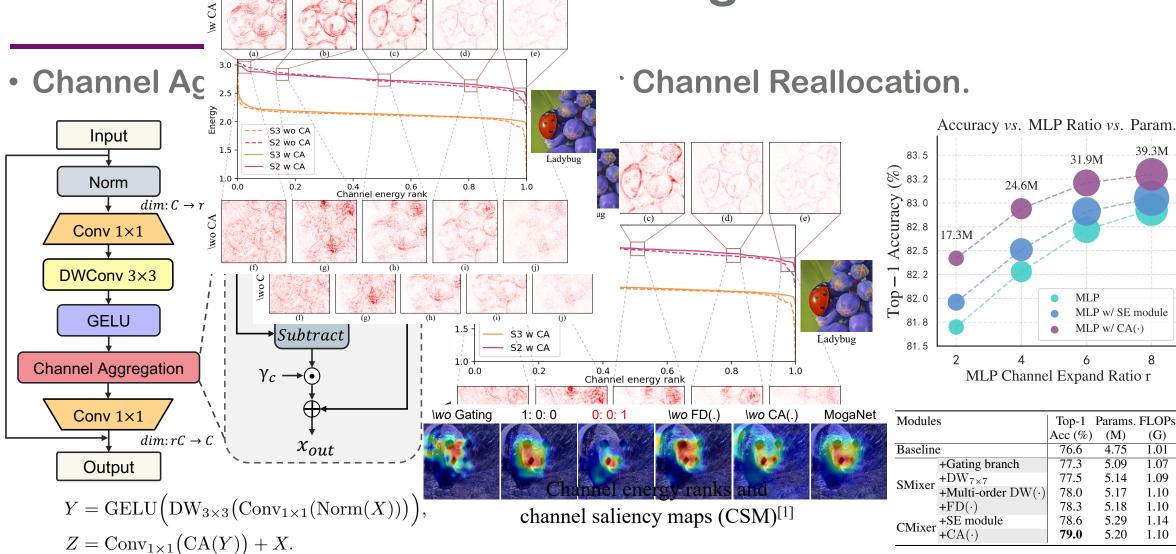
Multi-order Interaction: MogaNet

• Spatial Aggregation (SA): Multi-order context extraction + Gated aggregation.



Multi-order Interaction: MogaNet

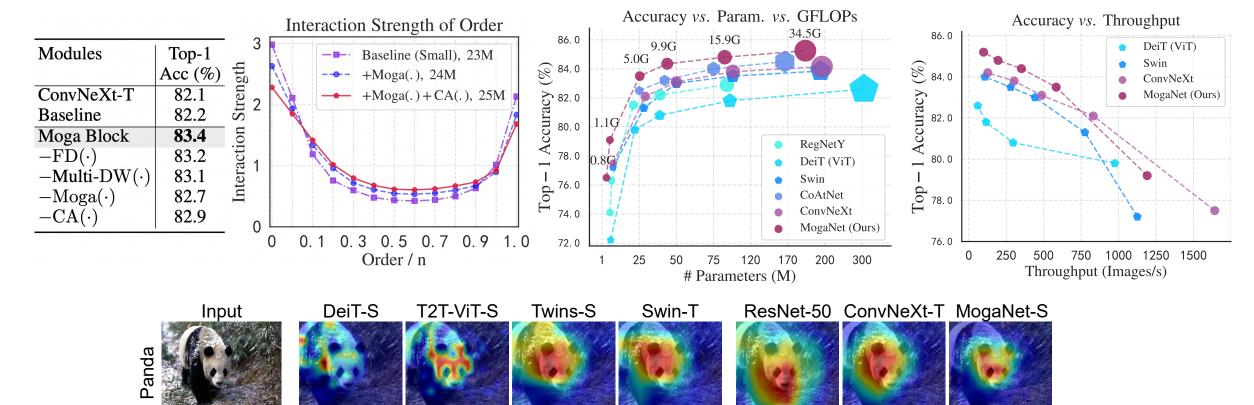
 $CA(X) = X + \gamma_c \odot (X - GELU(XW_r))$



Ablation of MogaNet-S on ImageNet

Multi-order Interaction: MogaNet

- Great scalability and efficiency of parameters.
- Relieving representation bottleneck.



Comparison Experiments of MogaNet

• ImageNet-1K Classification: 3M to 200M.

A 1.1.	D :		т	D.	EL OD	TD 1
Architecture	Date	Туре			. FLOPs	
			Size	(M)	(G)	Acc (%)
ResNet-18	CVPR'2016	C	224^{2}	11.7	1.80	71.5
ShuffleNetV2 2×	ECCV'2018	C	224^{2}	5.5	0.60	75.4
EfficientNet-B0	ICML'2019	C	224^{2}	5.3	0.39	77.1
RegNetY-800MF	CVPR'2020	C	224^{2}	6.3	0.80	76.3
DeiT-T [†]	ICML'2021	T	224^{2}	5.7	1.08	74.1
PVT-T	ICCV'2021	T	224^{2}	13.2	1.60	75.1
T2T-ViT-7	ICCV'2021	T	224^{2}	4.3	1.20	71.7
ViT-C	NIPS'2021	T	224^{2}	4.6	1.10	75.3
$SReT ext{-}T_{Distill}$	ECCV'2022	T	224^{2}	4.8	1.10	77.6
PiT-Ti	ICCV'2021	Η	224^{2}	4.9	0.70	74.6
LeViT-S	ICCV'2021	Η	224^{2}	7.8	0.31	76.6
CoaT-Lite-T	ICCV'2021	Η	224^{2}	5.7	1.60	77.5
Swin-1G	ICCV'2021	Η	224^{2}	7.3	1.00	77.3
MobileViT-S	ICLR'2022	Η	256^{2}	5.6	4.02	78.4
MobileFormer-294M	CVPR'2022	Н	224^{2}	11.4	0.59	77.9
ConvNext-XT	CVPR'2022	C	224^{2}	7.4	0.60	77.5
VAN-B0	CVMJ'2023	C	224^{2}	4.1	0.88	75.4
ParC-Net-S	ECCV'2022	C	256^{2}	5.0	3.48	78.6
MogaNet-XT	Ours	C	256^{2}	3.0	1.04	77.2
MogaNet-T	Ours	C	224^{2}	5.2	1.10	79.0
MogaNet-T§	Ours	C	256^{2}	5.2	1.44	80.0

Light-weight (3-10M)

ADE20K Sematic Seg.

Architecture	Date	Type	Image	Param.	FLOPs	Top-1
		• •	Size	(M)	(G)	Acc (%)
Deit-S	ICML'2021	T	224^{2}	22	4.6	79.8
Swin-T	ICCV'2021	T	224^{2}	28	4.5	81.3
CSWin-T	CVPR'2022	T	224^{2}	23	4.3	82.8
LITV2-S	NIPS'2022	T	224^{2}	28	3.7	82.0
CoaT-S	ICCV'2021	Η	224^{2}	22	12.6	82.1
CoAtNet-0	NIPS'2021	Н	224^{2}	25	4.2	82.7
UniFormer-S	ICLR'2022	Η	224^{2}	22	3.6	82.9
RegNetY-4GF [†]	CVPR'2020	C	224^{2}	21	4.0	81.5
ConvNeXt-T	CVPR'2022	C	224^{2}	29	4.5	82.1
SLaK-T	ICLR'2023	C	224^{2}	30	5.0	82.5
HorNet-T _{7×7}	NIPS'2022	C	224^{2}	22	4.0	82.8
MogaNet-S	Ours	C	224^{2}	25	5.0	83.4
Swin-S	ICCV'2021	T	224^{2}	50	8.7	83.0
Focal-S	NIPS'2021	T	224^{2}	51	9.1	83.6
CSWin-S	CVPR'2022	T	224^{2}	35	6.9	83.6
LITV2-M	NIPS'2022	T	224^{2}	49	7.5	83.3
CoaT-M	ICCV'2021	Η	224^{2}	45	9.8	83.6
CoAtNet-1	NIPS'2021	Η	224^{2}	42	8.4	83.3
UniFormer-B	ICLR'2022	Η	224^{2}	50	8.3	83.9
FAN-B-Hybrid	ICML'2022	Η	224^{2}	50	11.3	83.9
EfficientNet-B6	ICML'2019	C	528^{2}	43	19.0	84.0
RegNetY-8GF [†]	CVPR'2020	C	224^{2}	39	8.1	82.2
ConvNeXt-S	CVPR'2022	C	224^{2}	50	8.7	83.1
FocalNet-S (LRF)	NIPS'2022	C	224^{2}	50	8.7	83.5
HorNet-S _{7×7}	NIPS'2022	C	224^{2}	50	8.8	84.0
SLaK-S	ICLR'2023	C	224^{2}	55	9.8	83.8
MogaNet-B	Ours	C	224^{2}	44	9.9	84.3

Normal size (25-50M)

- Video Prediction
- COCO 2D / 3D Pose Estimation

COCO Det. and Ins. Seg.

Mask R-CNN 1×

Type #P. FLOPs

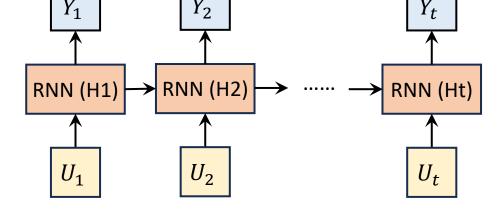
Architecture

Architecture	Type	#P.	FLOPS						
		(M)	(G)	AP^b	AP^b_{50}	AP^b_{75}	AP^m	AP_{50}^m	AP_{75}^m
RegNet-800M	С	27	187	37.5	57.9	41.1	34.3	56.0	36.8
MogaNet-XT	C	23	185	40.7	62.3	44.4	37.6	59.6	40.2
ResNet-18	С	31	207	34.0	54.0	36.7	31.2	51.0	32.7
RegNet-1.6G	C	29	204	38.9	60.5	43.1	35.7	57.4	38.9
PVT-T	T	33	208	36.7	59.2	39.3	35.1	56.7	37.3
PoolFormer-S12	T	32	207	37.3	59.0	40.1	34.6	55.8	36.9
MogaNet-T	C	25	192	42.6	64.0	46.4	39.1	61.3	42.0
ResNet-50	С	44	260	38.0	58.6	41.4	34.4	55.1	36.7
RegNet-6.4G	C	45	307	41.1	62.3	45.2	37.1	59.2	39.6
PVT-S	T	44	245	40.4	62.9	43.8	37.8	60.1	40.3
Swin-T	T	48	264	42.2	64.6	46.2	39.1	61.6	42.0
MViT-T	T	46	326	45.9	68.7	50.5	42.1	66.0	45.4
PoolFormer-S36	T	32	207	41.0	63.1	44.8	37.7	60.1	40.0
Focal-T	T	49	291	44.8	67.7	49.2	41.0	64.7	44.2
PVTV2-B2	T	45	309	45.3	67.1	49.6	41.2	64.2	44.4
LITV2-S	T	47	261	44.9	67.0	49.5	40.8	63.8	44.2
CMT-S	Η	45	249	44.6	66.8	48.9	40.7	63.9	43.4
Conformer-S/16	Η	58	341	43.6	65.6	47.7	39.7	62.6	42.5
Uniformer-S	Н	41	269	45.6	68.1	49.7	41.6	64.8	45.0
ConvNeXt-T	C	48	262	44.2	66.6	48.3	40.1	63.3	42.8
FocalNet-T (SRF)	C	49	267	45.9	68.3	50.1	41.3	65.0	44.3
FocalNet-T (LRF)	C	49	268	46.1	68.2	50.6	41.5	65.1	44.5
MogaNet-S	C	45	272	46.7	68.0	51.3	42.2	65.4	45.5
ResNet-101	С	63	336	40.4	61.1	44.2	36.4	57.7	38.8
RegNet-12G	C	64	423	42.2	63.7	46.1	38.0	60.5	40.5
PVT-M	T	64	302	42.0	64.4	45.6	39.0	61.6	42.1
Swin-S	T	69	354	44.8	66.6	48.9	40.9	63.4	44.2
Focal-S	T	71	401	47.4	69.8	51.9	42.8	66.6	46.1
PVTV2-B3	T	65	397	47.0	68.1	51.7	42.5	65.7	45.7
LITV2-M	T	68	315	46.5	68.0	50.9	42.0	65.1	45.0
UniFormer-B	Η	69	399	47.4	69.7	52.1	43.1	66.0	46.5
ConvNeXt-S	C	70	348	45.4	67.9	50.0	41.8	65.2	45.1
MogaNet-B	C	63	373	47.9	70.0	52.7	43.2	67.0	46.6
Swin-B	T	107	496	46.9	69.6	51.2	42.3	65.9	45.6
PVTV2-B5	T	102	557	47.4	68.6	51.9	42.5	65.7	46.0
ConvNeXt-B	C	108	486	47.0	69.4	51.7	42.7	66.3	46.0
FocalNet-B (SRF)	C	109	496	48.8	70.7	53.5	43.3	67.5	46.5
MogaNet-L	C	102	495	49.4	70.7	54.1	44.1	68.1	47.6

State-Space Models

- State-Space Model (SSM): "Parallel RNN"
- SSM vs. Convolution: "Long Convolution"

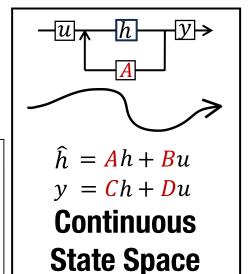
SSM:
$$\hat{h}(t) = Ah(t) + Bu(t)$$
, RNN: $h_t = \sigma(W_1U_t + W_2h_{t-1})$, $y(t) = Ch(t) + Du(t)$. $o_t = \sigma(W_3h_t)$. $y_k = \overline{CA}^k \overline{B}u_0 + \overline{CA}^{k-1} \overline{B}u_1 + \cdots + \overline{CAB}u_{k-1} + \overline{CB}u_k$ $y = \overline{K} * u$.

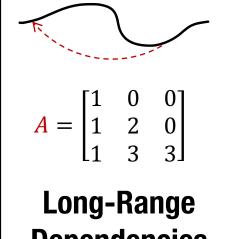


HiPPO Matrix

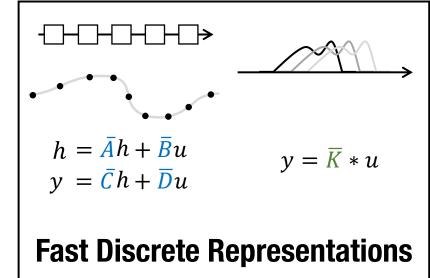
$$\mathbf{A}_{nk} = \begin{cases} (-1)^{n-k} (2k+1) & n > k \\ k+1 & n = k \\ 0 & n < k \end{cases}$$

$$\mathbf{A} = \begin{bmatrix} 1 \\ -1 & 2 \\ 1 & -3 & 3 \\ -1 & 3 & -5 & 4 \\ 1 & -3 & 5 & -7 & 5 \\ -1 & 3 & -5 & 7 & -9 & 6 \\ 1 & -3 & 5 & -7 & 9 & -11 & 7 \\ -1 & 3 & -5 & 7 & -9 & 11 & -13 & 8 \\ \vdots & & & & \vdots \end{bmatrix}$$





Dependencies



Structured state space h'(t) = Ah(t) + Bx(t)

$$(1a) h_t = \overline{A}h_{t-1} + \overline{B}x_t ($$

(2a)
$$\overline{\mathbf{K}} = (C\overline{\mathbf{B}}, C\overline{\mathbf{A}}\overline{\mathbf{B}}, \dots, C\overline{\mathbf{A}}^{k}\overline{\mathbf{B}}, \dots)$$
 (3a)

sequence models (S4)
$$y(t) = Ch(t)$$

$$y(t) = Ch(t)$$

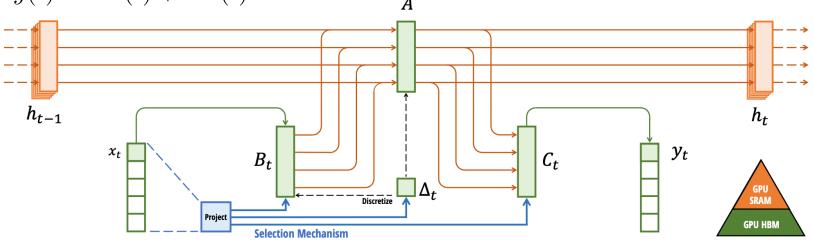
$$(1b) y_t = Ch_t$$

$$y = x * \overline{K} \tag{3b}$$

 $x(t) \in \mathbb{R}^L \to y(t) \in \mathbb{R}^L, A \in \mathbb{C}^{N \times N}, B, C \in \mathbb{C}^N, D \in \mathbb{C}^1$

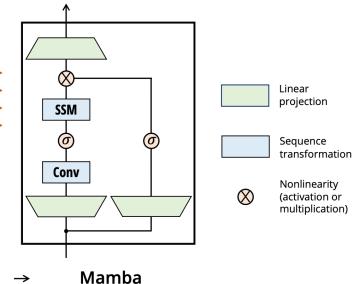
$$h'(t) = Ah(t) + Bx(t)$$

$$y(t) = Ch(t) + Dx(t)$$



Model	Params	A	Accuracy (%) at Sequence Length								
		2^{10}	2^{12}	2^{14}	2^{16}	2^{18}	2^{20}				
HyenaDNA Mamba	1.4M 1.4M	28.04 31.47	_0	41.17 27.66	42.22 40.72	31.10 42.41	54.87 71.67				
Mamba	7M	30.00	29.01	31.48	43.73	56.60	81.31				

Great Apes DNA Classification



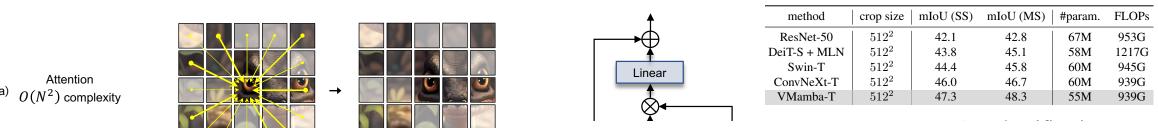
 $g_t = \sigma(\text{Linear}(x_t))$

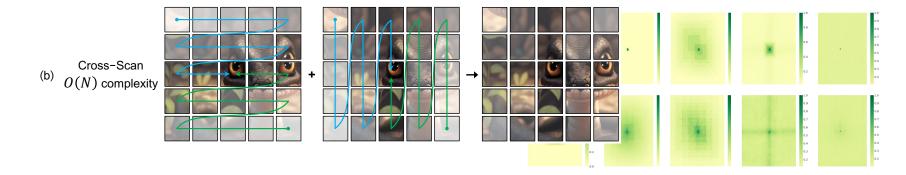
$$h_t = (1 - g_t)h_{t-1} + g_t x_t$$

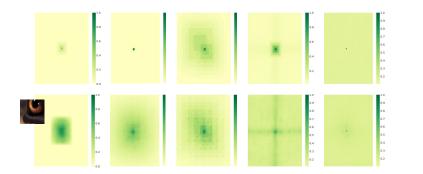
[1] Linear-Time Sequence Modeling with Selective State Spaces. arXiv, 2023.

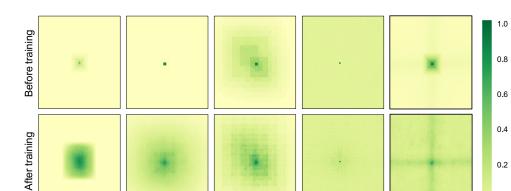
State-Space Models: VMamba

ADE20K Segmentation









Thank you!

Paper: MogaNet

Code: MogaNet

Homepage

